2025/11/02 1/6 bash_scripts

Bash Scripting

Basics

Exit codes

In bash, exit codes indicate the success or failure of a command or script.

e 0 - success
e anything else - failure

Variables and Data Types

Bash primarily deals with strings, but can handle numbers and arrays. Example:

name="John"
age=

Command substitution

Allows you to use the output of a command as part of another command. Example:

current date=$(date +%Y-%m-%d

Input/output redirection

Allows you to control where input comes from and where output goes. Example:

echo "Hello" output.txt # Redirect output to a file
cat input.txt # Read input from a file

Control Structures

Conditionals

If statements

/dev/null - http://2027a.net/

Last update: 2024/10/25 tech:bash_scripts http://2027a.net/tech/bash_scripts?rev=1729867940

Used for conditional execution of code. Example:
condition .
echo "condition met"
condition 2 ;
echo "condition 2 met"

echo "no condition met"

Case statements

Used for multiple conditional branches. Example:

"$variable"
patternl) commandl
pattern2) command2

default command

Loops
For loops

Used to iterate over a list of items. Examples:

Regular
my_a rray=
item ${my array[@]}

echo $item
C-style

i=0;1 ; i++));
echo "$i"

Range
i .. C
echo "$i"

Pattern matching

http://2027a.net/ Printed on 2025/11/02

2025/11/02 3/6 bash_scripts

item ./content/*.md;
echo "$item"

Command result
item $(1ls ~/Notes/);
echo $item

While loops

Executes a block of code as long as a condition is true. Example:
counter=
$counter -1t ;

echo $counter
counter++

Functions

Reusable blocks of code. They operate like mini-scripts. Example:

greet
echo "Hello, $1!"

greet "World"

Comparisons and Tests

String comparison

val="a"
II$Va'LII —— Ilall
ll$va'Lll = llbll

Numerical comparison

num=
“$num" -eq # equal
"$num" -ne # not equal

/dev/null - http://2027a.net/

Last update: 2024/10/25 tech:bash_scripts

http://2027a.net/tech/bash_scripts?rev=1729867940

"$num" -1t 2 # less than

"$num" -le 2 # less than or equal
“$num" -gt 1 # greater than

“$num" -ge 1 # greater than or equal

Variable existence

Va'l-=ll 1

-z $val # var is null

-n $val # var is not null
File checks

file="./hello"

-f $file # file exists
-d $file # directory exists
-e $file # file or directory exists

Permissions checks

file="./hello"

-r $file # readable
-w $file # writable
-x $file # executable

Logical Operations and Combinations

Internal combinations

$val -gt 5 -a $val -1t 10 # -a -> AND

$val -gt 5 -0 $val -1t 3 # -0 -> OR
External combinations

$val -gt 5 $val -1t 10 # AND

$val -gt 5 $val -1t 3 # OR

http://2027a.net/

Printed on 2025/11/02

2025/11/02 5/6 bash_scripts

Conditional execution

commandl command2 # Execute command2 if commandl was successful
commandl command2 # Execute command?2 if commandl failed

Useful Commands and Concepts

sleep

Pauses the script for a specified amount of time.

read

Reads input from the user. Example:
read -p "Do you want to continue (Y/n) " resp
$resp != "Y" :

exit

echo "Continuing..."

set options

Activates strict mode in bash:

-euo pipefail

e set -e: exit on error
e set -u: exit on unset var
e set -0 pipefail: exit on pipe fail

mktemp
Creates a temporary file or directory.
trap

Sets up a function to be called when the script receives specific signals.

/dev/null - http://2027a.net/

Last update: 2024/10/25 tech:bash_scripts

http://2027a.net/tech/bash_scripts?rev=1729867940

Arrays

Store multiple values in a single variable. Example:

fruits=("apple" "banana" "cherry"
echo ${fruits[O]} # Outputs: apple

Best Practices

¢ Use meaningful variable names

e Comment your code

e Use functions for repeated code

¢ Always quote variables when using them
e Use set -euo pipefail for safer scripts

From:
http://2027a.net/ - /dev/null

Permanent link:
http://2027a.net/tech/bash_scripts?rev=1729867940

Last update: 2024/10/25

http://2027a.net/

Printed on 2025/11/02

http://2027a.net/
http://2027a.net/tech/bash_scripts?rev=1729867940

	Bash Scripting
	Basics
	Exit codes
	Variables and Data Types
	Command substitution
	Input/output redirection

	Control Structures
	Conditionals
	If statements
	Case statements

	Loops
	For loops
	While loops

	Functions

	Comparisons and Tests
	String comparison
	Numerical comparison
	Variable existence
	File checks
	Permissions checks

	Logical Operations and Combinations
	Internal combinations
	External combinations
	Conditional execution

	Useful Commands and Concepts
	sleep
	read
	set options
	mktemp
	trap
	Arrays

	Best Practices

