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Bash Scripting

Basics

Exit codes

In bash, exit codes indicate the success or failure of a command or script.

e 0 - success
e anything else - failure

Variables and Data Types

Bash primarily deals with strings, but can handle numbers and arrays. Example:

name="John"
age=

Command substitution

Allows you to use the output of a command as part of another command. Example:

current date=$(date +%Y-%m-%d

Input/output redirection

Allows you to control where input comes from and where output goes. Example:

echo "Hello" output.txt # Redirect output to a file
cat input.txt # Read input from a file

Control Structures

Conditionals

If statements
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Used for conditional execution of code. Example:
condition .
echo "condition met"
condition 2 ;
echo "condition 2 met"

echo "no condition met"

Case statements

Used for multiple conditional branches. Example:

"$variable"
patternl) commandl
pattern2) command2

default command

Loops
For loops

Used to iterate over a list of items. Examples:

# Regular
my_a rray=
item ${my array[@]}

echo $item
# C-style

i=0;1 ; i++));
echo "$i"

# Range
i .. C
echo "$i"

# Pattern matching
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item ./content/*.md;
echo "$item"

# Command result
item $(1ls ~/Notes/);
echo $item

While loops

Executes a block of code as long as a condition is true. Example:
counter=
$counter -1t ;

echo $counter
counter++

Functions

Reusable blocks of code. They operate like mini-scripts. Example:

greet
echo "Hello, $1!"

greet "World"

Comparisons and Tests

String comparison

val="a"
II$Va'LII —— Ilall
ll$va'Lll = llbll

Numerical comparison

num=
“$num" -eq # equal
"$num" -ne # not equal
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"$num" -1t 2 # less than

"$num" -le 2 # less than or equal
“$num" -gt 1 # greater than

“$num" -ge 1 # greater than or equal

Variable existence

Va'l-=ll 1

-z $val # var is null

-n $val # var is not null
File checks

file="./hello"

-f $file # file exists
-d $file # directory exists
-e $file # file or directory exists

Permissions checks

file="./hello"

-r $file # readable
-w $file # writable
-x $file # executable

Logical Operations and Combinations

Internal combinations

$val -gt 5 -a $val -1t 10 # -a -> AND

$val -gt 5 -0 $val -1t 3 # -0 -> OR
External combinations

$val -gt 5 $val -1t 10 # AND

$val -gt 5 $val -1t 3 # OR
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Conditional execution

commandl command2 # Execute command2 if commandl was successful
commandl command2 # Execute command?2 if commandl failed

Useful Commands and Concepts

sleep

Pauses the script for a specified amount of time.

read

Reads input from the user. Example:
read -p "Do you want to continue (Y/n) " resp
$resp != "Y" :

exit

echo "Continuing..."

set options

Activates strict mode in bash:

-euo pipefail

e set -e: exit on error
e set -u: exit on unset var
e set -0 pipefail: exit on pipe fail

mktemp
Creates a temporary file or directory.
trap

Sets up a function to be called when the script receives specific signals.

/dev/null - http://2027a.net/



Last update: 2024/10/25 tech:bash_scripts

http://2027a.net/tech/bash_scripts?rev=1729867940

Arrays

Store multiple values in a single variable. Example:

fruits=("apple" "banana" "cherry"
echo ${fruits[O]} # Outputs: apple

Best Practices

¢ Use meaningful variable names

e Comment your code

e Use functions for repeated code

¢ Always quote variables when using them
e Use set -euo pipefail for safer scripts
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