
2025/11/02 1/7 bash_scripts

/dev/null - http://2027a.net/

Bash Scripting

Table of Contents

Basics
Exit codes
Variables and Data Types
Command substitution
Input/output redirection

Control Structures
Conditionals

If statements
Case statements

Loops
For loops
While loops

Functions
Comparisons and Tests

String comparison
Numerical comparison
Variable existence
File checks
Permissions checks

Logical Operations and Combinations
Internal combinations
External combinations
Conditional execution

Useful Commands and Concepts
sleep
read
set options
mktemp
trap
Arrays

Best Practices

Basics

Exit codes

In bash, exit codes indicate the success or failure of a command or script.

0 → success

Last update: 2024/10/25 tech:bash_scripts http://2027a.net/tech/bash_scripts?rev=1729866053

http://2027a.net/ Printed on 2025/11/02

anything else → failure

Variables and Data Types

Bash primarily deals with strings, but can handle numbers and arrays. Example:

name="John"
age=30

Command substitution

Allows you to use the output of a command as part of another command. Example:

current_date=$(date +%Y-%m-%d)

Input/output redirection

Allows you to control where input comes from and where output goes. Example:

echo "Hello" > output.txt # Redirect output to a file
cat < input.txt # Read input from a file

Control Structures

Conditionals

If statements

Used for conditional execution of code. Example:

if [[condition]]; then
 echo "condition met"
elif [[condition_2]]; then
 echo "condition_2 met"
else
 echo "no condition met"
fi

2025/11/02 3/7 bash_scripts

/dev/null - http://2027a.net/

Case statements

Used for multiple conditional branches. Example:

case "$variable" in
 pattern1) command1 ;;
 pattern2) command2 ;;
 *) default_command ;;
esac

Loops

For loops

Used to iterate over a list of items. Examples:

Regular
my_array=(1 2 3 4 5)
for item in ${my_array[@]}
do
 echo $item
done

C-style
for ((i = 0; i < 10; i++)); do
 echo "$i"
done

Range
for i in {1..10}; do
 echo "$i"
done

Pattern matching
for item in ./content/*.md; do
 echo "$item"
done

Command result
for item in $(ls ~/Notes/); do
 echo $item
done

Last update: 2024/10/25 tech:bash_scripts http://2027a.net/tech/bash_scripts?rev=1729866053

http://2027a.net/ Printed on 2025/11/02

While loops

Executes a block of code as long as a condition is true. Example:

counter=0
while [[$counter -lt 5]]; do
 echo $counter
 ((counter++))
done

Functions

Reusable blocks of code. They operate like mini-scripts. Example:

greet() {
 echo "Hello, $1!"
}
greet "World"

Comparisons and Tests

String comparison

val="a"
[["$val" == "a"]]
[["$val" != "b"]]

Numerical comparison

num=1
[["$num" -eq 1]] # equal
[["$num" -ne 2]] # not equal
[["$num" -lt 2]] # less than
[["$num" -le 2]] # less than or equal
[["$num" -gt 1]] # greater than
[["$num" -ge 1]] # greater than or equal

Variable existence

val=""

2025/11/02 5/7 bash_scripts

/dev/null - http://2027a.net/

[[-z $val]] # var is null
[[-n $val]] # var is not null

File checks

file="./hello"
[[-f $file]] # file exists
[[-d $file]] # directory exists
[[-e $file]] # file or directory exists

Permissions checks

file="./hello"
[[-r $file]] # readable
[[-w $file]] # writable
[[-x $file]] # executable

Logical Operations and Combinations

Internal combinations

[[$val -gt 5 -a $val -lt 10]] # -a -> AND
[[$val -gt 5 -o $val -lt 3]] # -o -> OR

External combinations

[[$val -gt 5]] && [[$val -lt 10]] # AND
[[$val -gt 5]] || [[$val -lt 3]] # OR

Conditional execution

command1 && command2 # Execute command2 if command1 was successful
command1 || command2 # Execute command2 if command1 failed

Useful Commands and Concepts

Last update: 2024/10/25 tech:bash_scripts http://2027a.net/tech/bash_scripts?rev=1729866053

http://2027a.net/ Printed on 2025/11/02

sleep

Pauses the script for a specified amount of time.

read

Reads input from the user. Example:

read -p "Do you want to continue (Y/n) " resp
if [[$resp != "Y"]]; then
 exit 1
fi
echo "Continuing..."

set options

Activates strict mode in bash:

set -euo pipefail

set -e: exit on error
set -u: exit on unset var
set -o pipefail: exit on pipe fail

mktemp

Creates a temporary file or directory.

trap

Sets up a function to be called when the script receives specific signals.

Arrays

Store multiple values in a single variable. Example:

fruits=("apple" "banana" "cherry")
echo ${fruits[0]} # Outputs: apple

2025/11/02 7/7 bash_scripts

/dev/null - http://2027a.net/

Best Practices

Use meaningful variable names
Comment your code
Use functions for repeated code
Always quote variables when using them
Use set -euo pipefail for safer scripts

From:
http://2027a.net/ - /dev/null

Permanent link:
http://2027a.net/tech/bash_scripts?rev=1729866053

Last update: 2024/10/25

http://2027a.net/
http://2027a.net/tech/bash_scripts?rev=1729866053

	Bash Scripting
	Table of Contents
	Basics
	Exit codes
	Variables and Data Types
	Command substitution
	Input/output redirection

	Control Structures
	Conditionals
	If statements
	Case statements

	Loops
	For loops
	While loops

	Functions

	Comparisons and Tests
	String comparison
	Numerical comparison
	Variable existence
	File checks
	Permissions checks

	Logical Operations and Combinations
	Internal combinations
	External combinations
	Conditional execution

	Useful Commands and Concepts
	sleep
	read
	set options
	mktemp
	trap
	Arrays

	Best Practices

